Spec No.	TQ3C-8EAF0-E1DEY71-00
Date	September 9, 2016

TYPE : TCGO62HYNQQAVNN-GN2O

66.2 inch HVGA transmissive color TF'T with LED backlight and constant current circuit for LED backlight>

CONTENTS

1. Application
2. Construction and outline
3. Mechanical specifications
4. Absolute maximum ratings
5. Electrical characteristics
6. Optical characteristics
7. Interface signals
8. Input timing characteristics
9. Backlight characteristics
10. Lot number identification
11. Warranty
12. Precautions for use
13. Reliability test data
14. Outline drawing

Sep 14, 2016
KYOCERA
Display Core

KYOCERA DISPLAY CORPORATION

This specification is subject to change without notice.
Consult Kyocera before ordering.

Original Issue Date	Designed by: Engineering dept.		Confirmed by: QA dept.		
	Prepared	Checked	Approved	Checked	Approved
September 9, 2016	M. Koyama	Y. Yamajaki	4.Matremoto	O. Sato	Ikamas S

Spec No. TQ3C-8EAF0-E1DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page - $\mathbf{~}$

Warning

1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

	Spec No.		
TQ3C-8EAF0-E1DEY71-00		\quad	Part No.
---:	:---		
TCG062HVLQAVNN-GN20	\quad	Page	
---:	:---		
-			

Revision record

Spec No. TQ3C-8EAF0-E1DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page 1

1. Application

This document defines the specification of TCG062HVLQAVNN-GN20 (RoHS Compliant)

2. Construction and outline

LCD	: Transmissive color dot matrix type TFT
Backlight system	$:$ LED
Polarizer	: Glare treatment
Additional circuit	$:$ Power supply (3.3V input)
	(with constant current circuit for LED Backlight)

3. Mechanical specifications

Item	Specification	Unit
Outline dimensions 1)	$173(\mathrm{~W}) \times 70(\mathrm{H}) \times 6.7(\mathrm{D})$	mm
Active area	$147.84(\mathrm{~W}) \times 55.44(\mathrm{H})$ $(15.8 \mathrm{~cm} / 6.2$ inch $($ Diagonal $))$	mm
Effective viewing area	$149.8(\mathrm{~W}) \times 57.4(\mathrm{H})$	mm
Dot format	$640 \times(\mathrm{B}, \mathrm{G}, \mathrm{R})(\mathrm{W}) \times 240(\mathrm{H})$	dot
Dot pitch	$0.077(\mathrm{~W}) \times 0.231(\mathrm{H})$	mm
Base color	Normally Black	-
Mass	115	g

1) Projection not included. Please refer to outline for details.
2) Due to the characteristics of the LCD material, the color varies with environmental temperature.

Spec No. TQ3C-8EAF0-E1DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page 2

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Supply voltage for LCD drive		VDD	0	4.0	V
Supply voltage for Backlight		$\mathrm{V}_{\text {IN }} \mathrm{B}$	0	6.0	V
Input signal voltage	RxINi+, RxINi- 1) 2)	$\mathrm{V}_{\text {I1 }}$	-0.3	VDD	V
	RxCK IN+, RxCK IN- ${ }^{-}$	$\mathrm{V}_{\text {2 } 2}$	-0.3	VDD	V
	SC	VI3	-0.3	VDD	V
	BLEN (Backlight ON-OFF)	VI4	0	VINB	V
	VBRT (Brightness adjust voltage)	$\mathrm{V}_{\text {I5 }}$	0	VINB	V

1) $i=0,1,2$
2) V_{DD} must be supplied correctly within the range described in 5-1.

4-2. Environmental absolute maximum ratings

Item	Symbol	Min.	Max.	Unit	
Operating temperature	$1)$	$\mathrm{T}_{\text {OP }}$	-20	70	${ }^{\circ} \mathrm{C}$
Storage temperature	$2)$	$\mathrm{T}_{\text {STO }}$	-30	80	${ }^{\circ} \mathrm{C}$
Operating humidity	$3)$	Hop	10	$4)$	$\% \mathrm{RH}$
Storage humidity	$3)$	$\mathrm{H}_{\text {STO }}$	10	$4)$	$\% \mathrm{RH}$
Vibration	-	$5)$	$5)$	-	
Shock		-	$6)$	$6)$	-

1) Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at $25^{\circ} \mathrm{C}$, another temperature range should be confirmed.
2) Temp. $=-30^{\circ} \mathrm{C}<48 \mathrm{~h}$, Temp. $=80^{\circ} \mathrm{C}<168 \mathrm{~h}$

Store LCD at normal temperature/humidity. Keep them free from vibration and shock.
An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard.
(Please refer to "Precautions for Use" for details.)
3) Non-condensing
4) Temp. $\leqq 40^{\circ} \mathrm{C}, 85 \%$ RH Max.

Temp. $>40^{\circ} \mathrm{C}$, Absolute humidity shall be less than 85% RH at $40^{\circ} \mathrm{C}$.
5)

Frequency	$10 \sim 55 \mathrm{~Hz}$	Acceleration value $\left(0.3 \sim 9 \mathrm{~m} / \mathrm{s}^{2}\right)$
Vibration width	0.15 mm	1 minutes Interval$\frac{\|c\|}{} 10-55-10 \mathrm{~Hz}$

2 hours in each direction X, Y, Z (6 hours total)
EIAJ ED-2531
6) Acceleration: $490 \mathrm{~m} / \mathrm{s}^{2}$, Pulse width: 11 ms

3 times in each direction: $\pm \mathrm{X}, \pm \mathrm{Y}, \pm \mathrm{Z}$
EIAJ ED-2531

Spec No. TQ3C-8EAF0-E1DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page 3

5. Electrical characteristics

5-1. LCD

Item	Temp. $=-20 \sim 70^{\circ} \mathrm{C}$					
	Symbol	Condition	Min.	Typ.	Max.	Unit
Supply voltage 1)	VDD	-	3.0	3.3	3.6	V
Current consumption	I_{DD}	2)	-	80	105	mA
Permissive input ripple voltage	VRP	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	-	100	$\mathrm{mVp}-\mathrm{p}$
Input signal voltage 3)	$\mathrm{V}_{\text {IL }}$	"Low" level	0	-	$0.2 \mathrm{~V}_{\text {DD }}$	V
	$\mathrm{V}_{\text {IH }}$	"High" level	0.8 VDD	-	VDD	V
Input leak current 3)	IoL	$\mathrm{V}_{\mathrm{I} 3}=0 \mathrm{~V}$	-10	-	10	$\mu \mathrm{A}$
	$\mathrm{IOH}^{\text {I }}$	$\mathrm{V}_{13}=3.3 \mathrm{~V}$	-	-	350	$\mu \mathrm{A}$
Differential input voltage 4)	$\mid \mathrm{VID}_{\text {I }}$ \|	-	100	-	600	mV
Differential input threshold voltage	$\mathrm{V}_{\text {TL }}$	"Low" level	-100	-	-	mV
	$\mathrm{V}_{\text {TH }}$	"High" level	-	-	100	mV
LVDS Common mode voltage 4)	$\mathrm{V}_{\text {ICM }}$	-	$\mid \mathrm{V}_{\text {ID }}$ \|/2	1.2	$2.4{ }^{-\mid} \mathrm{V}_{\mathrm{ID}} \mid / 2$	V
Terminator	R_{1}	-	-	100	-	Ω

1) $V_{D D}-$ turn $-o n$ conditions

2) Display pattern:

$$
\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \text { Temp. }=25^{\circ} \mathrm{C}
$$

3) Input signal : SC
4) Input signal : RxIN2+, RxIN2-, RxIN1+, RxIN1-, RxIN0+, RxIN0-, RxCKIN+, RxCKIN-

6. Optical characteristics

Measuring spot $=\phi 6.0 \mathrm{~mm}$, Temp. $=25^{\circ} \mathrm{C}$							
Item		Symbol	Condition	Min.	Typ.	Max.	Unit
Response time	Rise	τ_{r}	$\theta=\phi=0^{\circ}$	-	18	-	ms
	Down	$\tau_{\text {d }}$	$\theta=\phi=0^{\circ}$	-	12	-	ms
Viewing angle range		θ UPPER	$\mathrm{CR} \geqq 10$	-	85	-	deg.
		θ Lower		-	85	-	
		ϕ Left		-	85	-	deg.
		ϕ RIGHT		-	85	-	
Contrast ratio		CR	$\theta=\phi=0^{\circ}$	300	500	-	-
Brightness		L	$\mathrm{IF}=15 \mathrm{~mA} /$ Line	350	500	-	$\mathrm{cd} / \mathrm{m}^{2}$
Chromaticity coordinates	Red	x	$\theta=\phi=0^{\circ}$	0.540	0.590	0.640	
		y		0.300	0.350	0.400	
	Green	x	$\theta=\phi=0^{\circ}$	0.285	0.335	0.385	
		y		0.530	0.580	0.630	
	Blue	x	$\theta=\phi=0^{\circ}$	0.110	0.160	0.210	
		y		0.070	0.120	0.170	
	White	x	$\theta=\phi=0^{\circ}$	0.255	0.305	0.355	
		y		0.275	0.325	0.375	

$6-1$. Definition of contrast ratio

$$
\mathrm{CR}(\text { Contrast ratio })=\frac{\text { Brightness with all pixels "White" }}{\text { Brightness with all pixels "Black" }}
$$

$6-2$. Definition of response time

6-3. Definition of viewing angle

6-4. Brightness measuring points

1) Rating is defined on the average in the viewing area. (measured point $1 \sim 5$)
2) Measured 5 minutes after the LED is powered on. (Ambient temp. $=25^{\circ} \mathrm{C}$)
7. Interface signals

7-1. LCD

No.	Symbol		Description
1	GNDB	GND for LED backlight	Note
2	GNDB	GND for LED backlight	
3	GNDB	GND for LED backlight	
4	VBRT	Brightness adjust voltage (0V[max]~2.8V[min])	
5	BLEN	Backlight ON-OFF (H : ON , L : OFF)	
6	VINB	Power supply for LED backlight	
7	VINB	Power supply for LED backlight	
8	VINB	Power supply for LED backlight	
9	NC	NC	
10	NC	NC	LVDS
11	VDD	$+3.3 V$ power supply	LVDS
12	VDD	+3.3V power supply	LVDS
13	GND	GND	
14	GND	GND	LVDS
15	RxIN0-	LVDS receiver signal CH0(-)	LVDS
16	RxIN0+	LVDS receiver signal CH0(+)	
17	GND	GND	LVDS
18	RxIN1-	LVDS receiver signal CH1(-)	LVDS
19	RxIN1+	LVDS receiver signal CH1(+)	
20	GND	GND	
21	RxIN2-	LVDS receiver signal CH2(-)	
22	RxIN2+	LVDS receiver signal CH2(+)	
23	GND	GND	$1)$
24	RxCKIN-	LVDS receiver signal CK(-)	
25	RxCKIN+	LVDS receiver signal CK(+)	
26	GND	GND	
27	NC	NC	
28	NC	NC	
29	GND	GND	Scan direction control (GND or Open: Normal, High: Reverse)

LCD connector	$:$	MDF76GW-30S-1H(55)	(HIROSE)
Matching connector	$:$	MDF76-30P-1C	(HIROSE)

LVDS receiver	$:$	BU90R104(ROHM)
Matching LVDS transmitter	$:$	BU8254KVT(ROHM) or compatible

1) Scanning

SC: GND or Open
SC: High

Spec No. TQ3C-8EAF0-E1DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page 7

8. Input timing characteristics

8-1. Timing characteristics

Item		Symbol	Min.	Typ.	Max.	Unit	Note
Clock (CK)	Frequency	1/Tc	11.58	12.85	14.16	MHz	
Enable signal (DE)	Horizontal Period	Th	766	816	866	Tc	
			54.1	63.5	-	$\mu \mathrm{s}$	1)
	Horizontal display period	Thd	640			Tc	
	Vertical Period	Tv	250	262	320	Th	
	Vertical display period	Tvd	240			Th	
Refresh rate		fv	50	60	70	Hz	2)

1) Please set a clock frequency, a vertical dormant period, and the horizontal dormant period so that the Horizontal Period should not reach less than Min. value.
2) If the refresh rate reach less than Min. value, the deterioration of the display quality, flicker etc., may occur. (fv=1/Tv)
3) CK count of each Horizontal Scanning Time should be always the same.Vertical invalid data period should be " n " \times "Horizontal Scanning Time". (n: integer) Frame period should be always the same.

Vertical Timing Diagram

Data

| | DH 1 | DH 2 | DH 3 | | DH 238 | DH 239 | DH 240 | | DH 1 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

ENAB

Horizontal Timing Diagram

8-2. Data
8-2-1. 6bit Input

DE : Data Enable
NA : Not Applicable

8-3. Input Data Signals and Display position on the screen

Spec No. TQ3C-8EAF0-E1DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page 9

9. Backlight characteristics

Item	Symbol	Min.	Typ.	Max.	Unit	Note
Supply voltage	VINB	3.0	-	5.5	V	$\mathrm{Ta}=-20 \sim 70^{\circ} \mathrm{C}$
ON-OFF (H)	BLEN	$0.8 \mathrm{~V}_{\text {IN }} \mathrm{B}$	-	$\mathrm{V}_{\text {IN }} \mathrm{B}$	V	-
ON-OFF (L)		0.0	-	0.2 V INB	V	-
LED forward current	IF	14	15	16	mA	VBRT $=0 \sim 1.4 \mathrm{~V}$
1) 2)		2.8	3.0	3.2		$\mathrm{VBRT}=2.8 \mathrm{~V}$
Supply current	IINB	-	350	450	mA	$\begin{gathered} \hline \mathrm{V} \text { IN }=3.3 \mathrm{~V}, \\ \mathrm{IF}=15 \mathrm{~mA} \\ \hline \end{gathered}$
		-	220	290		$\begin{gathered} \hline \mathrm{V}_{\text {IN }} \mathrm{B}=5.0 \mathrm{~V}, \\ \mathrm{IF}=15 \mathrm{~mA} \\ \hline \end{gathered}$
Operating life 3) 4)	T	-	40,000	-	h	$\begin{gathered} \mathrm{IF}=15 \mathrm{~mA}, \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \end{gathered}$

1) For each LED.
2) A forward current below 5.0 mA may reduce the brightness uniformity of the LED backlight. This is because the amount of light from each LED chip is different. Therefore, please evaluate carefully before finalizing the input current.
3) When brightness decrease 50% of minimum brightness.

The average life of a LED will decrease when the LCD is operating at higher temperatures.
4) Life time is estimated data. (Condition: $\mathrm{IF}=15 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ in chamber).
5) When you start-up, please charge in sequence of $V_{\text {IN }} B->B L E N$, or VBRT. When you shut-down, please stop in sequence of BLEN and/or VBRT $->\mathrm{V}_{\text {IN }} B$.
6) Please do not connect the other than our backlight to this output connector on the PCB.
7) In case $V_{D D}$ and $V_{I N} B$ are supplied by a single power source, $V_{D D} \& V_{I N} B$, and GND \& GNDB are connected directly and separately from the output on the power source. If the common wire are used for $V_{D D} \& V_{I N} B$, and for GND \& GNDB, and are split near the PCB, and connect to each LCD driving circuit and backlight driving circuit, a flicker might be occurred due to a ripple between the both circuit.

8) VBRT-IF characteristics

Spec No. TQ3C-8EAF0-E1DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page 11

10. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.


```
No1. - No5. above indicate
    1. Year code
    2. Month code
    3. Date
    4. Version Number
    5. Country of origin (Japan or China)
```

Year	2016	2017	2018	2019	2020	2021
Code	6	7	8	9	0	1

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
Code	1	2	3	4	5	6

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	7	8	9	X	Y	Z

11. Warranty

11-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

11-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.

Spec No. TQ3C-8EAF0-E1DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page 12

12. Precautions for use

12-1. Installation of the LCD

1) A transparent protection plate shall be added to protect the LCD and its polarizer
2) The LCD shall be installed so that there is no pressure on the LSI chips.
3) The LCD shall be installed flat, without twisting or bending.
4) Please design the housing window so that its edges are between the active area and the effective area of the LCD screen.
5) A transparent protection sheet is attached to the polarizer. Please remove the protection film slowly before use, paying attention to static electricity.

12-2. Static electricity

1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
2) Workers should use body grounding. Operator should wear ground straps.

12-3. LCD operation

1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.

12-4. Storage

1) The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
2) Always store the LCD so that it is free from external pressure onto it.

12-5. Usage

1) DO NOT store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
2) The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
3) The LCD screen may be cleaned by wiping the screen surface with a soft cloth or cotton pad using a little Ethanol.
4) Water may cause damage or discoloration of the polarizer. Clean condensation or moisture from any source immediately.
5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
6) Do not disassemble LCD because it will result in damage.
7) This Kyocera LCD has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
8) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
9) Liquid crystal may leak when the LCD is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	13

13. Reliability test data

Test item	Test condition	Test time	Judgement	
High temp. atmosphere	$80^{\circ} \mathrm{C}$	240 h	Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	$-30^{\circ} \mathrm{C}$	240 h	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. humidity atmosphere	$40^{\circ} \mathrm{C} 90 \% \mathrm{RH}$	240 h	Display function Display quality Current consumption	: No defect : No defect : No defect
Temp. cycle	$-30^{\circ} \mathrm{C} \quad 0.5 \mathrm{~h}$ R.T. $80^{\circ} \mathrm{C} \quad 0.5 \mathrm{~h}$ 0.5 h	10 cycles	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. operation	$70^{\circ} \mathrm{C}$	500 h	Display function Display quality Current consumption	: No defect : No defect : No defect

1) Each test item uses a test LCD only once. The tested LCD is not used in any other tests.
2) The LCD is tested in circumstances in which there is no condensation.
3) The reliability test is not an out-going inspection.
4) The result of the reliability test is for your reference purpose only. The reliability test is conducted only to examine the LCD's capability.

Note. (注記

1. Connector CN1:MDF76GW-30S-1H(55) (HIROSE)
2. Matching Connector CN1:MDF76-30P-1C (HIROSE
3. The (information of LCD is displayed starting at the upper left hand

4. There is a possibility that in-plane unevenness will be occurred by over twist, stress giving by attaching to LCD, and over pressure to touch panel.
Please be careful of tress when designing the housing.

DETAIL B (5:1)

Outline	Dimensions	Drawing No.	121A8095700	
	10	,	11	12

Spec No.	TQ3C-8EAF0-E2DEY71-00
Date	September 9, 2016

KYOCERA INSEPCRION STANNDARD

TYPE: TCGO62FIVIQANNNN-GN2O

KYOCERA DISPLAY CORPORATION

Original Issue Date	Designed by : Engineering dept.		Confirmed by : QA dept.		
	Prepared	Checked	Approved	Checked	Approved
September 9, 2016	M. Koyama	Y. Yamagahi	4fMatrumoto	O. Sato	I-Kamas 8

Spec No. TQ3C-8EAF0-E2DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page -

Revision record

Date	Designed by : Engineering dept.		Confirmed by : QA dept.				
		Prepared	Checked	Approved	Checked	Approved	
Rev.No.	Date	Page					

Spec No.	Part No.	Page
TQ3C-8EAF0-E2DEY71-00	TCG062HVLQAVNN-GN20	1

Visuals specification

1) Note

	Note		
General	1. Customer identified anomalies not defined within this inspection standard shall be reviewed by Kyocera, and an additional standard shall be determined by mutual consent. 2. This inspection standard about the image quality shall be applied to any defect within the effective active area and shall not be applicable to outside of the area. 3. Inspection conditions Luminance Inspection distance Temperature Direction : 500 Lux min. : 300 mm . $: 25 \pm 5^{\circ} \mathrm{C}$: Directly above		
Definition of inspection item	Dot defect	Bright dot defect	The dot is constantly "on" when power applied to the LCD, even when all "Black" data sent to the screen. Inspection tool: 5\% Transparency neutral density filter. Count dot: If the dot is visible through the filter. Don't count dot: If the dot is not visible through the filter. There is an electrode in the middle of the dot and one dot is shown in the left drawing.
		Black dot defect	The dot is constantly "off" when power applied to the LCD, even when all "White" data sent to the screen. Similar size compared to bright dot.
		White dot (Circular/foreign particle)	Pixel works electrically, however, circular/foreign particle makes dot appear to be "on" even when all "Black" data is sent to the screen.
		Adjacent dot	Adjacent dot defect is defined as two or more bright dot defects or black dot defects. dot defect
	External inspection	Bubble, Scratch, Foreign particle (Polarizer, Cell, Backlight)	Visible operating (all pixels "Black" or "White") and non operating.
		Appearance inspection	Does not satisfy the value at the spec.
	Definition of size	Definition of circle size Definition of linear size $d=(a+b) / 2$	

Spec No. TQ3C-8EAF0-E2DEY71-00	Part No. TCG062HVLQAVNN-GN20	Page

2) Standard

